Самая тонкая в мире линза создана австралийскими учеными

Материаловеды из Австралийского Национального Университета создали самую тонкую в мире линзу — всего в 9 атомных слоев толщиной 15 Март 2016, 11:43
Материаловеды из Австралийского Национального Университета создали самую тонкую в мире линзу — всего в 9 атомных слоев толщиной. Это стало возможным благодаря обнаружению у дисульфида молибдена, материала линз, необычных оптических свойств. Электромагнитной волне, проходящей через очень тонкую его пластинку «кажется», что ее толщина почти в 50 раз больше, чем на самом деле. Исследование опубликовано в журнале Light: Science & Applications, кратко о нем сообщает пресс-релиз университета.

Для создания линзы ученые с помощью скотча отщепили тонкий слой от монокристалла дисульфида молибдена (MoS2). Затем, с помощью сфокусированного пучка ионов авторы обработали получившийся фрагмент, создав вогнутую линзу диаметром около 10 микрометров. Толщина исходного тонкого слоя при этом была менее 6,3 нанометра.
Строение линзы (верхние изображения). Оптическая толщина линзы вдоль сечения (снизу слева) или в зависимости от количества слоев дисульфида молибдена (справа снизу)
Jiong Yang et al. / Light: Science & Applications, 2016
Эксперименты с линзой показали, что ее оптическая толщина варьировалась от 70 нанометров в самой тонкой части, до примерно 250 на краях. Объект интенсивно взаимодействовал со светом и изменял форму фронта электромагнитной волны, как это делают обыкновенные линзы. 

Такое явление носит название гигантской длины оптического пути. Исследователи связывают его с тем, что внутри материала свет может многократно переотражаться между слоями, что и приводит к существенному увеличению его оптической толщины. Это может быть связано с его высоким коэффициентом преломления — около 5,5. Аналогичный эффект наблюдается и в графене, однако там он почти на порядок меньше.

Авторы надеются, что линзы и дифракционные решетки на основе дисульфида молибдена помогут в создании гибких дисплеев и миниатюрных камер. В частности, из небольших микронных линз можно набирать массивы, аналогичные фасетчатым глазам насекомых. У использованного в работе материала есть и еще одно преимущество: с помощью внешнего электрического поля в нем можно изменять коэффициент преломления, а значит и оптические свойства.